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Abstract. A model of herding is introduced which is exceptionally simple, incorporating only two phe-
nomena, growth and addition. At each time step either (i) with probability p the system grows through
the introduction of a new agent or (ii) with probability q = 1 − p a free agent already in the system is
added at random to a group of size k with rate Ak. Two versions of the model, Ak = k and Ak = 1, are
solved and in both versions we find two different types of behaviour. When p > 1/2 all the moments of the
distribution of group sizes are linear in time for large time and the group distribution is power-law. When
p < 1/2 the system runs out of free agents in a finite time.

PACS. 02.50.cw Probability theory – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 89.75Hc. Networks and genealogical trees

1 Introduction

There have been a number of models introduced re-
cently [1–5] to model the herding and group kinetics of
agents in a market. This herding is believed to account
for the fat-tails [6–9] seen in the distribution of returns
for a number of financial quantities. These fat-tails are
seen on intra-day timescales, and when the distribution of
returns is measured on longer timescales, it is found to be
Gaussian.

The models can be divided into a number of categories.
The first model was introduced by Cont and Bouchaud [1]
who considered the network of agents to be a diluted reg-
ular lattice and showed how the distribution of the size
of the connected clusters on the lattice could lead to a
power-law distribution of returns.

Egúıluz and Zimmermann [2] introduced a kinetic ver-
sion of this model in which groups of agents can either
coagulate or fragment at each time step. This model was
solved exactly by D’Hulst and Rodgers [3] and since then
a number of generalised versions of this model have been
introduced [10–12].

In [4,13] a model based on the kinetics of the order
book was introduced in which either market or limit bids
to buy or sell were made at random. Under simple assump-
tions about the kinetics of this process, it was shown that
this model leads to a power-law distribution of returns.

Finally, in [5] a model of herding in which at each time
step either an incoming agent joins an existing group or
a group is fragmented into individual agents. The prob-
ability of each of these events is fixed. This is a simpler
version of a model introduced in [14] in which the above
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steps occur at each time step, but with rates determined
by the number of individual agents.

In this paper we introduce and solve a new model of
herding which is simpler than any of those introduced
previously. In the next section the model is introduced
and solved, in Section 3 the constant coefficient version of
the model is considered, and the final section summarises
the work.

2 The model

We introduce a model in which at each time step one of
two events, chosen at random, can occur. With probability
p an agent joins the system but remains free. With prob-
ability q = 1− p an addition event occurs in which a free
agent already in the system joins a group of size k with a
rate proportional to k. Consequently the number nk(t) of
groups of size k > 1 at time t evolves like

dnk(t)
dt

=
q

M(t)
[(k − 1)nk−1 − knk] (1)

and the number of groups with only one agent, or equiv-
alently the number of free agents, behaves like

dn1(t)
dt

= −q
[
n1

M(t)
+ 1
]

+ p. (2)

In these equations

N(t) =
∞∑
k=1

nk(t) (3)
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represents the number of groups and

M(t) =
∞∑
k=1

knk(t) (4)

is the number of agents in the system. The first and second
term on the right hand side of equation (1) describe the
addition of a new agent to an existing group to, respec-
tively, create and destroy a group of size k. In equation (2)
the first term on the right hand side is the destruction of
free agents by addition and the second term represents the
arrival of free agents. Using rate equations (1, 2) it is a
simple matter to show that

dN(t)
dt

= 2p− 1 (5)

and

dM(t)
dt

= p. (6)

Equation (5) represents the fact that with probability
2p − 1, on average, the number of groups increases by
one. Similarly, equation (6) indicates that with probabil-
ity p the number of agents increases by 1. We can imme-
diately see by looking at equation (5) that, on average,
when p > 1/2 the system is growing, when p = 1/2 the
system is static and when p < 1/2 the system runs out of
monomers in a finite time. We will treat these three cases
separately.

Case I: p > 1/2

The form of equations (1, 2, 5, 6) suggests that for
p > 1/2 the solution for nk(t), for k = 1, 2, ..., is linear in
time for large t. In this limit we solve equations (5, 6) to
yield

N(t) = (2p− 1)t and M(t) = pt. (7)

Writing

nk(t) = tck (8)

we find that for k > 1

ck =
1− p
p

[(k − 1)ck−1 − kck] . (9)

Using an initial condition obtained from equation (2) we
can solve equation (9) to give

ck = p(2p− 1)Γ
(

1 +
1

1− p

)
Γ (k)

Γ (k + 1
1−p)

(10)

where as k →∞,

ck ∼ k−
1

1−p . (11)

This result can be connected to models of financial
markets. If one imagines that at each time step, indepen-
dent of the group kinetic process, an agent is chosen at

random, and the group that agent is in trades by either
buying or selling a commodity with equal probability. In
this way a group of k agents trades with rate kck. If we
assume that the traded amount is proportional to the size
of the group, then we find that the distribution of returns
for the commodity, R(k). This is the equivalent to the dis-
tribution of the difference between the number of buyers
and sellers, and behaves like

R(k) ∼ kck = p(2p− 1)Γ
(

1 +
1

1− p

)
Γ (k + 1)
Γ (k + 1

1−p )
·

(12)

In the limit k → ∞ we have power-law behaviour in
the distribution of returns

R(k) ∼ k−β with β =
p

1− p · (13)

We see that β can take any value greater than 1 for 1/2 <
p < 1, with β → 1 as p→ 1/2 and β →∞ as p→ 1.

Case II: p = 1/2

When p = 1/2 the number of agents in the system
does not change, on average. With an initial condition of
N free agents, so that

N(0) = M(0) = n1(0) ≡ N, (14)

the full time dependent solution is

nk(t) = 2N2 tk−1

[t+ 2N ]k
· (15)

We thus have that the number of groups of size k grows
initially before decaying to zero. The system can run out of
free agents and, on average, this occurs when n1(t) ∼ O(1)
which occurs on time scales t ∼ O(N2). This observation
is in accord with a simple random walk argument; there
are N free agents at t = 0 and the number increases by 1
with probability 1/2 and decreases, by either 1 or 2, with
probability 1/2. We would thus expect the time taken to
have zero free agents scales as t ∼ O(N2).

From equation (15) have N(t) = N and
M(t) = N + t/2. In the limit t � N the number of
groups of size k grows like

nk(t) ∼ N
[
t

2N

]k−1

· (16)

In the limit N � t� N2 the group numbers decay as

nk(t) ∼ 1
t

and Mr(t) ∼
(
t

2

)r
(17)

where Mr(t) is the rth moment, defined by

Mr(t) =
∞∑
k=1

krnk(t). (18)
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Fig. 1. Average of the time (τ/N) it takes the system to run
out of monomers, as a function of p.

Case III: p < 1/2

When p < 1/2 the number of agents in the system still
increases but the number of groups and the number of free
agents falls. The system runs out of free agents in a finite
time. We can easily solve equation (2) to reveal

n1(t) = N

 2(1− p)[
1 + pt

N

] 1
p−1
− (1− 2p)

(
1 +

pt

N

) · (19)

At t = τ , n1(τ) = 0 and τ is given by

τ =
N

p

[[
2(1− p)
1− 2p

]p
− 1
]
. (20)

Thus τ is the average length of time it takes the system
to run out of free agents. This shown as a function of p
in Figure 1. In the limit when there are no new agents
added, p→ 0, we have

τ = N log 2. (21)

This time is shorter than N because some of the free
agents form a dimer with another monomer, eliminating
two free agents in one time step. When p → 1/2 from
below the average of the time to run out of free agents
diverges as

τ ∼ N(1− 2p)−
1
2 . (22)

The number of dimers, trimers etc. as well as the total
number of agents all become zero in finite times. However,
the time taken to run out of free agents is shorter and
consequently the most important timescale in the system.

3 Size independent rates

We can introduce a version of the above model in which
the rates are independent of the size of a group. In this
case the rate equation for the system is

dnk(t)
dt

=
q

N(t)
[nk−1 − nk] (23)

for k > 1 and n1(t) obeys

dn1(t)
dt

= −q
[
n1

N(t)
+ 1
]

+ p. (24)

Using a similar method to that used in the previous sec-
tion, we find that for p > 1/2

nk(t) = (2p− 1)2 (1− p)k−1

pk
t (25)

and for p = 1/2

nk(t) = N
tk−1

(2N)k−1(k − 1)!
e−

t
2N . (26)

When p < 1/2 the system runs out of free agents in time τ
given by

τ =
N

1− 2p

[
1−

[
1− 2p
1− p

] 1
p−2
]
· (27)

As p→ 0 we have

τ =
N

1− e−1
(28)

which, as in the previous model, is less than N because
sometimes two free agents are destroyed in one time step.
When p → 1/2 from below then τ diverges logarithmi-
cally as

τ ∼ 2N log(1− 2p) (29)

which is slower than the algebraic divergence seen in the
linear kernel model.

4 Discussion

A kinetic model for herding has been introduced which in-
corporates both growth and addition. The system grows
as new agents are introduced to the system and the ad-
dition mechanism allows groups of agents to be formed.
When the growth is fast enough the system exhibits a
group size distribution which is power-law with a parame-
ter dependent exponent. When that rate of growth is suf-
ficiently slow the system runs out of free agents in a finite
amount of time and the kinetics do not allow the power-
law group size distribution to develop. At the boundary
between these two cases is a system in which, on average,
the number of groups of agents does not change. Here the
time it takes the system to run out of free agents, via fluc-
tuations about the average behaviour, scales as the square
of the initial number of free agents in the system. When
the growth is slower than this, the time taken to run out
of free agents is proportional to the initial number of free
agents in the system.

This behaviour is observed in both the constant coef-
ficient and linear kernel versions of this model.

Models of this type [2,3,5], which are mean-field in
character, appear to be well suited to model simple pro-
cesses in social networks. These include processes in which
a property is exchanged between people or in which groups
of people are formed who all share the same property. The
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suitability of these models is in part due to the mean-field,
non-local, nature of social interactions in a modern, highly
connected world. Processes for which this approach would
appear relevant range from information or rumour spread-
ing, particularly in financial markets, through the take up
of the latest craze, such as lightweight scooters or Harry
Potter, to epidemiological studies of disease and epidemic
spread.

GJR would like to thank Dafang Zheng for useful discussions
and the Leverhulme Trust for financial support.
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